Atrito estático e cinético

 

Origem do atrito Princípios do atrito Leis do atrito Conclusão Bibliografia

 

voltar

 

As forças de atrito têm uma grande importância em todos os processos que ocorrem na Natureza. Elas se originam, evidentemente, nas áreas de contacto entre dois corpos. Assim, uma caixa entra em repouso logo que paramos de arrastá-la sobre o solo. As forças de atrito formadas nas áreas de contacto travam-na. Por outro lado, temos que empregar uma força para movê-las do lugar, empurrando ou puxando. Podemos medir o valor da força de atrito. Puxamos uma caixa ou um bloco sobre uma base horizontal e a força necessária empregada é medida por meio de um medidor de forças. Esta é a força que se iguala, em intensidade, à força de atrito que dificulta o movimento.

 

 

 

 

 

 

 

A origem do Atrito

A origem da força de atrito é de natureza electromagnética, e deve-se à interacção entre as nuvens electrónicas dos átomos localizados nas zonas de contacto entre os corpos. As "superfícies" aparentemente planas de materiais não o são de facto, estão cheias de altos e baixos com "picos" que podem atingir vários milhares de raios atómicos.

 

Quando duas "superfícies" de dois sólidos são postas em contacto, há de facto apenas uma pequena superfície de contacto entre eles. Nessas pequenas regiões de contacto os materiais ficam "soldados": os picos aderem uns aos outros em virtude das forças de coesão inter-moleculares. Mas quando os materiais são empurrados um em relação ao outro, esses inúmeros mas minúsculos "pontos de soldagem" entram em ruptura, dando lugar a outros à medida que novos contactos vão sendo realizados.

topo

 

 

 

 

 

Princípios do Atrito

1. O atrito age paralelamente às superfícies em contacto e na direcção oposta à da força que produz ou tende a produzir movimento.

2. O atrito depende da natureza dos materiais em contacto e do seu grau de polimento.

3. O atrito cinético é menor que o atrito estático.

4. O atrito cinético é praticamente independente da velocidade ( para velocidades de baixo valor ).

5. O atrito não depende, praticamente, da área de contacto.

6. O atrito é directamente proporcional à força de uma superfície contra a outra.

Começando por discutir o atrito, dizemos que as superfícies não são perfeitamente lisas, há imperfeições invisíveis, só perceptíveis a nível microscópico, o que se manifesta na dificuldade de movimento quando se entra em contacto dois corpos quaisquer, daí a oposição ao movimento.

O atrito é a componente da força de reacção do plano sobre o bloco na direcção do movimento, mas de sentido contrário. A outra componente é a força normal, perpendicular a superfície de contacto, bastante estudada. As duas componentes estão relacionadas na forma mostrada pela seguinte equação:

A letra µ representa o coeficiente de atrito entre as superfícies que estão em contacto. A equação 1 mostra que há uma relação de linearidade entre a força normal e a força de atrito, de ƒat, o valor de ƒaxN cresce linearmente até um valor máximo µe, chamado coeficiente de atrito estático, a partir desse instante, o valor do coeficiente de atrito decresce e permanece constante (consideramos constante), chamamos de µc, coeficiente de atrito cinético, havendo movimento entre os corpos.

O coeficiente de atrito µc é obtido experimentalmente da seguinte maneira:

De posse de um plano móvel em conjunto com um mecanismo graduado para se medir o ângulo, este é aumentado gradualmente, determina-se coeficiente de atrito cinético entre o corpo e o plano quando se observa o ângulo para o qual o movimento se iniciou, calculando a sua tangente. Logo:

Escrevendo a 2ª Lei de Newton para um corpo num plano inclinado com atrito em movimento rectilíneo e uniforme, teríamos como componentes na direcção de cada eixo, as expressões 1 e 2 a seguir:

Reescrevendo a Equação 1 para a situação em que há movimento, obtém-se a Equação 3.

Do somatório das forças na direcção x, expressão 1, tiramos a força de atrito, e do somatório das forças na direcção y, expressão 2, tem-se a força normal:

Se dividirmos a força de atrito pela força normal encontra-se o mesmo resultado da Equação 2. Mas para analisarmos melhor vejamos a seguinte situação experimental teórica:

Um livro assente sobre uma mesa é empurrado com uma pequena força horizontal, F, exercida com a mão, da esquerda para a direita como mostra a fig. 2

 

Se esta força for suficientemente pequena o livro não se desloca. Porquê? Por causa de uma força que se gera na interface livro-mesa: a mesa também passa a exercer uma força sobre o livro que contraria a força F. Trata-se da força de atrito que está representada na fig. 2 pelo vector ƒe.

Esta é uma força de atrito estático assim chamada porque não há movimento relativo entre o livro e a mesa. Mas quando a força exercida pela mão aumenta, o livro começa, de facto, a deslocar-se sobre a mesa. Continua a existir uma força de atrito mas verifica-se que ela é menor. Na fig. 3 esta força de atrito cinético está representada por ƒc.

 

Distinguimos, pois, dois tipos de forças de atrito, dependendo da existência ou não de movimento relativo entre as superfícies em contacto. Tanto a força de atrito estático como a força de atrito cinético dependem, entre outros factores, da natureza dos materiais em contacto. Uma borracha assente em asfalto permite gerar uma força de atrito maior do que, por exemplo, num metal sobre gelo. Se um automóvel tiver os pneus "carecas" o atrito é pequeno e o carro "patina" ao arrancar. Para curvar em segurança é também necessário que haja atrito suficiente entre os pneus e a estrada. Os pneus de qualidade são capazes de gerar forças de atrito suficientes, em terrenos de vários tipos e nas mais variadas condições meteorológicas. Na linguagem corrente diz-se que o carro "agarra" bem à estrada.

topo

 

 

 

 

 

Leis do atrito cinético e estático

Quando um corpo se move sobre uma superfície (apenas estamos a considerar movimento de translação) a força de atrito cinético que actua sobre o corpo tem direcção oposta à da velocidade do corpo. A intensidade dessa força de atrito depende da natureza dos materiais em contacto, como se disse já. A experiência mostra que, para dois materiais sólidos em contacto, a força de atrito cinético é proporcional à força normal entre duas superfícies, ou seja, é proporcional à força normal que um objecto exerce sobre o outro. Representando a força normal por N, a força de atrito cinético relaciona-se com a força de contacto normal através de

onde µc o coeficiente de atrito cinético "tem a ver" com os materiais em contacto.

Note-se que a expressão anterior, que traduz uma lei empírica, é uma relação entre grandezas de vectores e não entre os próprios vectores já que estes são perpendiculares entre si. Na fig. 4 (a) representa-se uma caixa assente sobre uma superfície horizontal, à qual se aplicou uma força F que a obriga a deslocar-se para a direita. As outras forças aplicadas são o peso, P, a força normal N que a superfície horizontal exerce sobre a caixa e que contraria o peso, e a força de atrito cinético ƒc que é horizontal (portanto, perpendicular a N) e que aponta no sentido oposto ao da velocidade.

 

Representações de forças como a da fig. 4 têm de ser vistas como esquemáticas:

Note-se que o conjunto de forças aplicadas obrigaria a caixa a rodar (tal como o objecto da fig. 4). Por isso, e sabendo-se que apenas existe movimento de translação, há toda a vantagem em representar o corpo por um ponto onde todas as forças estão aplicadas, como na fig. 4. No caso de superfícies sólidas em contacto estarem secas, o coeficiente de atrito cinético é praticamente independente da velocidade do movimento relativo. Mas, em geral, as forças de atrito dependem da velocidade, como veremos no final deste trabalho. Analisemos agora o atrito estático que se gera entre superfícies que estão imóveis uma em relação à outra, mas sujeitas a forças que solicitam o seu movimento relativo. Retomemos o exemplo da fig. 2 em que se aplica uma força F a um livro assente sobre uma mesa mas com intensidade tal que este não se desloca em virtude do aparecimento de uma força de atrito estático, igual a F, mas com sentido oposto. Se a força directamente aplicada aumentar e o corpo continuar sem se deslocar, é porque a força de atrito também aumentou. Mas, continuando a aumentar a intensidade de F, a certa altura o livro começa a mover-se sobre a superfície, como sabemos. A força de atrito estático já não pôde crescer mais do que um certo valor e portanto já não pôde acompanhar o crescimento de F. Dizemos que a força de atrito estático atingiu o seu máximo valor possível o qual depende, por um lado, da natureza dos materiais em contacto e, por outro lado, da força de reacção normal sobre o objecto.

 

Usando uma linguagem simbólica podemos escrever

onde ƒe,máx é o coeficiente de atrito estático. Como a força de atrito estático pode variar entre zero e um valor máximo, então:

O coeficiente de atrito estático é, em geral, superior ao coeficiente de atrito cinético. Já todos devem ter reparado que é mais fácil manter um móvel em movimento sobre o chão do que pô-lo em movimento. Na tabela seguinte apresentam-se alguns valores para coeficientes de atrito.

topo

 

 

 

 

 

Conclusão

Por este trabalho poderemos tirar as seguintes deduções:

O coeficiente de atrito depende unicamente dos materiais que compõem as superfícies em contacto pois se temos uma área diferente registam-se os mesmos valores, para o coeficiente de atrito, independentemente da massa do corpo ou do tamanho da superfície de contacto.

O coeficiente de atrito estático é sempre superior ao do coeficiente de atrito cinético para os mesmos materiais das mesmas superfícies em contacto.

topo

 

 

 

 

 

Bibliografia

Universidade de Aveiro, Física e modelação.

Sá, Mª Teresa Marques de, Física 12º ano, Texto Editora, Unidade 1, "Força e Movimento", 1ª edição, Lisboa 2001, págs. 48 a 53

topo

voltar